MakeItFrom.com
Menu (ESC)

S64512 Stainless Steel vs. 4032 Aluminum

S64512 stainless steel belongs to the iron alloys classification, while 4032 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S64512 stainless steel and the bottom bar is 4032 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
120
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 17
6.7
Fatigue Strength, MPa 540
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
28
Shear Strength, MPa 700
260
Tensile Strength: Ultimate (UTS), MPa 1140
390
Tensile Strength: Yield (Proof), MPa 890
320

Thermal Properties

Latent Heat of Fusion, J/g 270
570
Maximum Temperature: Mechanical, °C 750
180
Melting Completion (Liquidus), °C 1460
570
Melting Onset (Solidus), °C 1420
530
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 28
140
Thermal Expansion, µm/m-K 10
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
34
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.3
7.8
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 110
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
25
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
700
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 40
41
Strength to Weight: Bending, points 31
45
Thermal Diffusivity, mm2/s 7.5
59
Thermal Shock Resistance, points 42
20

Alloy Composition

Aluminum (Al), % 0
81.1 to 87.2
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0 to 0.1
Copper (Cu), % 0
0.5 to 1.3
Iron (Fe), % 80.6 to 84.7
0 to 1.0
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 0.5 to 0.9
0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0.5 to 1.3
Nitrogen (N), % 0.010 to 0.050
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.35
11 to 13.5
Sulfur (S), % 0 to 0.025
0
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15