MakeItFrom.com
Menu (ESC)

S64512 Stainless Steel vs. EN AC-47000 Aluminum

S64512 stainless steel belongs to the iron alloys classification, while EN AC-47000 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S64512 stainless steel and the bottom bar is EN AC-47000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
60
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 17
1.7
Fatigue Strength, MPa 540
68
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
27
Tensile Strength: Ultimate (UTS), MPa 1140
180
Tensile Strength: Yield (Proof), MPa 890
97

Thermal Properties

Latent Heat of Fusion, J/g 270
570
Maximum Temperature: Mechanical, °C 750
170
Melting Completion (Liquidus), °C 1460
590
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 28
130
Thermal Expansion, µm/m-K 10
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
33
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
110

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 3.3
7.7
Embodied Energy, MJ/kg 47
140
Embodied Water, L/kg 110
1040

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
2.5
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
65
Stiffness to Weight: Axial, points 14
16
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 40
19
Strength to Weight: Bending, points 31
27
Thermal Diffusivity, mm2/s 7.5
55
Thermal Shock Resistance, points 42
8.3

Alloy Composition

Aluminum (Al), % 0
82.1 to 89.5
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0 to 0.1
Copper (Cu), % 0
0 to 1.0
Iron (Fe), % 80.6 to 84.7
0 to 0.8
Lead (Pb), % 0
0 to 0.2
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 0.5 to 0.9
0.050 to 0.55
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0 to 0.3
Nitrogen (N), % 0.010 to 0.050
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.35
10.5 to 13.5
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
0 to 0.55
Residuals, % 0
0 to 0.25