MakeItFrom.com
Menu (ESC)

S64512 Stainless Steel vs. C61300 Bronze

S64512 stainless steel belongs to the iron alloys classification, while C61300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S64512 stainless steel and the bottom bar is C61300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 17
34 to 40
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
43
Shear Strength, MPa 700
370 to 390
Tensile Strength: Ultimate (UTS), MPa 1140
550 to 580
Tensile Strength: Yield (Proof), MPa 890
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 270
220
Maximum Temperature: Mechanical, °C 750
210
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 28
55
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.6
12
Electrical Conductivity: Equal Weight (Specific), % IACS 4.1
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
29
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 3.3
3.0
Embodied Energy, MJ/kg 47
49
Embodied Water, L/kg 110
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
150 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
230 to 410
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 40
18 to 19
Strength to Weight: Bending, points 31
18
Thermal Diffusivity, mm2/s 7.5
15
Thermal Shock Resistance, points 42
19 to 20

Alloy Composition

Aluminum (Al), % 0
6.0 to 7.5
Carbon (C), % 0.080 to 0.15
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 0
88 to 91.8
Iron (Fe), % 80.6 to 84.7
2.0 to 3.0
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0.5 to 0.9
0 to 0.2
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 2.0 to 3.0
0 to 0.15
Nitrogen (N), % 0.010 to 0.050
0
Phosphorus (P), % 0 to 0.025
0 to 0.015
Silicon (Si), % 0 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0.2 to 0.5
Vanadium (V), % 0.25 to 0.4
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2