MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. A242.0 Aluminum

S66286 stainless steel belongs to the iron alloys classification, while A242.0 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is A242.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 17 to 40
1.6
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
220

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 920
210
Melting Completion (Liquidus), °C 1430
680
Melting Onset (Solidus), °C 1370
550
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
110

Otherwise Unclassified Properties

Base Metal Price, % relative 26
12
Density, g/cm3 7.9
3.1
Embodied Carbon, kg CO2/kg material 6.0
8.3
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 170
1130

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
45
Strength to Weight: Axial, points 22 to 36
20
Strength to Weight: Bending, points 20 to 28
26
Thermal Diffusivity, mm2/s 4.0
52
Thermal Shock Resistance, points 13 to 22
9.3

Alloy Composition

Aluminum (Al), % 0 to 0.35
89.3 to 93.1
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0.15 to 0.25
Copper (Cu), % 0
3.7 to 4.5
Iron (Fe), % 49.1 to 59.5
0 to 0.8
Magnesium (Mg), % 0
1.2 to 1.7
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
1.8 to 2.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 1.9 to 2.4
0.070 to 0.2
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15