MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. EN AC-42200 Aluminum

S66286 stainless steel belongs to the iron alloys classification, while EN AC-42200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is EN AC-42200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 17 to 40
3.0 to 6.7
Fatigue Strength, MPa 240 to 410
86 to 90
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
320
Tensile Strength: Yield (Proof), MPa 280 to 670
240 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
500
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1430
610
Melting Onset (Solidus), °C 1370
600
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 17
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
140

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 7.9
2.6
Embodied Carbon, kg CO2/kg material 6.0
8.0
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 170
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
9.0 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
410 to 490
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 22 to 36
34 to 35
Strength to Weight: Bending, points 20 to 28
40 to 41
Thermal Diffusivity, mm2/s 4.0
66
Thermal Shock Resistance, points 13 to 22
15

Alloy Composition

Aluminum (Al), % 0 to 0.35
91 to 93.1
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 49.1 to 59.5
0 to 0.19
Magnesium (Mg), % 0
0.45 to 0.7
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 1.9 to 2.4
0 to 0.25
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.1