MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. EN AC-48100 Aluminum

S66286 stainless steel belongs to the iron alloys classification, while EN AC-48100 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
76
Elongation at Break, % 17 to 40
1.1
Fatigue Strength, MPa 240 to 410
120 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
29
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
240 to 330
Tensile Strength: Yield (Proof), MPa 280 to 670
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 300
640
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1430
580
Melting Onset (Solidus), °C 1370
470
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
87

Otherwise Unclassified Properties

Base Metal Price, % relative 26
11
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 6.0
7.3
Embodied Energy, MJ/kg 87
130
Embodied Water, L/kg 170
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
250 to 580
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 22 to 36
24 to 33
Strength to Weight: Bending, points 20 to 28
31 to 38
Thermal Diffusivity, mm2/s 4.0
55
Thermal Shock Resistance, points 13 to 22
11 to 16

Alloy Composition

Aluminum (Al), % 0 to 0.35
72.1 to 79.8
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
4.0 to 5.0
Iron (Fe), % 49.1 to 59.5
0 to 1.3
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
16 to 18
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 1.9 to 2.4
0 to 0.25
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.25