MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. Sintered 2014 Aluminum

S66286 stainless steel belongs to the iron alloys classification, while sintered 2014 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is sintered 2014 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 17 to 40
0.5 to 3.0
Fatigue Strength, MPa 240 to 410
52 to 100
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
140 to 290
Tensile Strength: Yield (Proof), MPa 280 to 670
97 to 280

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Maximum Temperature: Mechanical, °C 920
170
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1370
560
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
33
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
100

Otherwise Unclassified Properties

Base Metal Price, % relative 26
10
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 6.0
8.0
Embodied Energy, MJ/kg 87
150
Embodied Water, L/kg 170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
1.0 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
68 to 560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
47
Strength to Weight: Axial, points 22 to 36
13 to 27
Strength to Weight: Bending, points 20 to 28
20 to 33
Thermal Diffusivity, mm2/s 4.0
51
Thermal Shock Resistance, points 13 to 22
6.2 to 13

Alloy Composition

Aluminum (Al), % 0 to 0.35
91.5 to 96.3
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
3.5 to 5.0
Iron (Fe), % 49.1 to 59.5
0
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 1.2
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0
Residuals, % 0
0 to 1.5