MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. C18700 Copper

S66286 stainless steel belongs to the iron alloys classification, while C18700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 40
9.0 to 9.6
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
43
Shear Strength, MPa 420 to 630
170 to 190
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
290 to 330
Tensile Strength: Yield (Proof), MPa 280 to 670
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 920
200
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1370
950
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 15
380
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
98
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
99

Otherwise Unclassified Properties

Base Metal Price, % relative 26
30
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 6.0
2.6
Embodied Energy, MJ/kg 87
41
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
240 to 280
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22 to 36
9.0 to 10
Strength to Weight: Bending, points 20 to 28
11 to 12
Thermal Diffusivity, mm2/s 4.0
110
Thermal Shock Resistance, points 13 to 22
10 to 12

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
98 to 99.2
Iron (Fe), % 49.1 to 59.5
0
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0
Residuals, % 0
0 to 0.5