MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. C28000 Muntz Metal

S66286 stainless steel belongs to the iron alloys classification, while C28000 Muntz Metal belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is C28000 Muntz Metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 17 to 40
10 to 45
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 75
40
Shear Strength, MPa 420 to 630
230 to 330
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
330 to 610
Tensile Strength: Yield (Proof), MPa 280 to 670
150 to 370

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 920
120
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1370
900
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 17
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
31

Otherwise Unclassified Properties

Base Metal Price, % relative 26
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 6.0
2.7
Embodied Energy, MJ/kg 87
46
Embodied Water, L/kg 170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
27 to 240
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
110 to 670
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22 to 36
11 to 21
Strength to Weight: Bending, points 20 to 28
13 to 20
Thermal Diffusivity, mm2/s 4.0
40
Thermal Shock Resistance, points 13 to 22
11 to 20

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
59 to 63
Iron (Fe), % 49.1 to 59.5
0 to 0.070
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
36.3 to 41
Residuals, % 0
0 to 0.3