MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. C62500 Bronze

S66286 stainless steel belongs to the iron alloys classification, while C62500 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 40
1.0
Fatigue Strength, MPa 240 to 410
460
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
42
Shear Strength, MPa 420 to 630
410
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
690
Tensile Strength: Yield (Proof), MPa 280 to 670
410

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 920
230
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1370
1050
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 15
47
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
11

Otherwise Unclassified Properties

Base Metal Price, % relative 26
26
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 6.0
3.3
Embodied Energy, MJ/kg 87
55
Embodied Water, L/kg 170
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
750
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22 to 36
24
Strength to Weight: Bending, points 20 to 28
22
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 13 to 22
24

Alloy Composition

Aluminum (Al), % 0 to 0.35
12.5 to 13.5
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
78.5 to 84
Iron (Fe), % 49.1 to 59.5
3.5 to 5.5
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0
Residuals, % 0
0 to 0.5