MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. C63200 Bronze

S66286 stainless steel belongs to the iron alloys classification, while C63200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is C63200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17 to 40
17 to 18
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
44
Shear Strength, MPa 420 to 630
390 to 440
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
640 to 710
Tensile Strength: Yield (Proof), MPa 280 to 670
310 to 350

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 920
230
Melting Completion (Liquidus), °C 1430
1060
Melting Onset (Solidus), °C 1370
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
29
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 6.0
3.4
Embodied Energy, MJ/kg 87
55
Embodied Water, L/kg 170
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
95 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
400 to 510
Stiffness to Weight: Axial, points 14
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22 to 36
21 to 24
Strength to Weight: Bending, points 20 to 28
20 to 21
Thermal Diffusivity, mm2/s 4.0
9.6
Thermal Shock Resistance, points 13 to 22
22 to 24

Alloy Composition

Aluminum (Al), % 0 to 0.35
8.7 to 9.5
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
78.8 to 82.6
Iron (Fe), % 49.1 to 59.5
3.5 to 4.3
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
1.2 to 2.0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
4.0 to 4.8
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0
Residuals, % 0
0 to 0.5