MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. C66200 Brass

S66286 stainless steel belongs to the iron alloys classification, while C66200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is C66200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 40
8.0 to 15
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
42
Shear Strength, MPa 420 to 630
270 to 300
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
450 to 520
Tensile Strength: Yield (Proof), MPa 280 to 670
410 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 920
180
Melting Completion (Liquidus), °C 1430
1070
Melting Onset (Solidus), °C 1370
1030
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
36

Otherwise Unclassified Properties

Base Metal Price, % relative 26
29
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 6.0
2.7
Embodied Energy, MJ/kg 87
43
Embodied Water, L/kg 170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
40 to 66
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
760 to 1030
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 22 to 36
14 to 17
Strength to Weight: Bending, points 20 to 28
15 to 16
Thermal Diffusivity, mm2/s 4.0
45
Thermal Shock Resistance, points 13 to 22
16 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
86.6 to 91
Iron (Fe), % 49.1 to 59.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0.3 to 1.0
Phosphorus (P), % 0 to 0.040
0.050 to 0.2
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.2 to 0.7
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
6.5 to 12.9
Residuals, % 0
0 to 0.5