MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. S43940 Stainless Steel

Both S66286 stainless steel and S43940 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is S43940 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17 to 40
21
Fatigue Strength, MPa 240 to 410
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
77
Shear Strength, MPa 420 to 630
310
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
490
Tensile Strength: Yield (Proof), MPa 280 to 670
280

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 780
540
Maximum Temperature: Mechanical, °C 920
890
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1370
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
12
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 6.0
2.6
Embodied Energy, MJ/kg 87
38
Embodied Water, L/kg 170
120

Common Calculations

PREN (Pitting Resistance) 19
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
86
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
200
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22 to 36
18
Strength to Weight: Bending, points 20 to 28
18
Thermal Diffusivity, mm2/s 4.0
6.8
Thermal Shock Resistance, points 13 to 22
18

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 13.5 to 16
17.5 to 18.5
Iron (Fe), % 49.1 to 59.5
78.2 to 82.1
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Niobium (Nb), % 0
0.3 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 1.9 to 2.4
0.1 to 0.6
Vanadium (V), % 0.1 to 0.5
0