MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. S44330 Stainless Steel

Both S66286 stainless steel and S44330 stainless steel are iron alloys. They have 70% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17 to 40
25
Fatigue Strength, MPa 240 to 410
160
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 75
78
Shear Strength, MPa 420 to 630
280
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
440
Tensile Strength: Yield (Proof), MPa 280 to 670
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 780
560
Maximum Temperature: Mechanical, °C 920
990
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1370
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 17
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 26
13
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 6.0
2.8
Embodied Energy, MJ/kg 87
40
Embodied Water, L/kg 170
140

Common Calculations

PREN (Pitting Resistance) 19
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
91
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22 to 36
16
Strength to Weight: Bending, points 20 to 28
17
Thermal Diffusivity, mm2/s 4.0
5.7
Thermal Shock Resistance, points 13 to 22
16

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0 to 0.025
Chromium (Cr), % 13.5 to 16
20 to 23
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 49.1 to 59.5
72.5 to 79.7
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 1.9 to 2.4
0 to 0.8
Vanadium (V), % 0.1 to 0.5
0