MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. S44627 Stainless Steel

Both S66286 stainless steel and S44627 stainless steel are iron alloys. They have 71% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is S44627 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17 to 40
24
Fatigue Strength, MPa 240 to 410
200
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 75
80
Shear Strength, MPa 420 to 630
310
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
490
Tensile Strength: Yield (Proof), MPa 280 to 670
300

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 780
470
Maximum Temperature: Mechanical, °C 920
1100
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1370
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
14
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 6.0
2.9
Embodied Energy, MJ/kg 87
41
Embodied Water, L/kg 170
160

Common Calculations

PREN (Pitting Resistance) 19
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
100
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
220
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22 to 36
18
Strength to Weight: Bending, points 20 to 28
18
Thermal Diffusivity, mm2/s 4.0
4.6
Thermal Shock Resistance, points 13 to 22
16

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0 to 0.010
Chromium (Cr), % 13.5 to 16
25 to 27.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 49.1 to 59.5
69.2 to 74.2
Manganese (Mn), % 0 to 2.0
0 to 0.4
Molybdenum (Mo), % 1.0 to 1.5
0.75 to 1.5
Nickel (Ni), % 24 to 27
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.2
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0