MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. S44660 Stainless Steel

Both S66286 stainless steel and S44660 stainless steel are iron alloys. They have 74% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is S44660 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
210
Elongation at Break, % 17 to 40
20
Fatigue Strength, MPa 240 to 410
330
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 75
81
Shear Strength, MPa 420 to 630
410
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
660
Tensile Strength: Yield (Proof), MPa 280 to 670
510

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 780
640
Maximum Temperature: Mechanical, °C 920
1100
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
21
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 6.0
4.3
Embodied Energy, MJ/kg 87
61
Embodied Water, L/kg 170
180

Common Calculations

PREN (Pitting Resistance) 19
38
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
120
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
640
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 22 to 36
24
Strength to Weight: Bending, points 20 to 28
22
Thermal Diffusivity, mm2/s 4.0
4.5
Thermal Shock Resistance, points 13 to 22
21

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0 to 0.030
Chromium (Cr), % 13.5 to 16
25 to 28
Iron (Fe), % 49.1 to 59.5
60.4 to 71
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 1.0 to 1.5
3.0 to 4.0
Nickel (Ni), % 24 to 27
1.0 to 3.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0
0 to 0.040
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 1.9 to 2.4
0.2 to 1.0
Vanadium (V), % 0.1 to 0.5
0