MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. ZK61A Magnesium

S66286 stainless steel belongs to the iron alloys classification, while ZK61A magnesium belongs to the magnesium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is ZK61A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
46
Elongation at Break, % 17 to 40
5.8 to 7.1
Fatigue Strength, MPa 240 to 410
120 to 140
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
18
Shear Strength, MPa 420 to 630
170 to 180
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
290 to 310
Tensile Strength: Yield (Proof), MPa 280 to 670
180 to 200

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 920
120
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1370
530
Specific Heat Capacity, J/kg-K 470
960
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 17
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
130

Otherwise Unclassified Properties

Base Metal Price, % relative 26
13
Density, g/cm3 7.9
1.9
Embodied Carbon, kg CO2/kg material 6.0
23
Embodied Energy, MJ/kg 87
160
Embodied Water, L/kg 170
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
15 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
370 to 420
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
62
Strength to Weight: Axial, points 22 to 36
42 to 45
Strength to Weight: Bending, points 20 to 28
50 to 53
Thermal Diffusivity, mm2/s 4.0
65
Thermal Shock Resistance, points 13 to 22
17 to 18

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 49.1 to 59.5
0
Magnesium (Mg), % 0
92.1 to 93.9
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0 to 0.010
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
5.5 to 6.5
Zirconium (Zr), % 0
0.6 to 1.0
Residuals, % 0
0 to 0.3