MakeItFrom.com
Menu (ESC)

S81921 Stainless Steel vs. 5056 Aluminum

S81921 stainless steel belongs to the iron alloys classification, while 5056 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S81921 stainless steel and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 29
4.9 to 31
Fatigue Strength, MPa 370
140 to 200
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
25
Shear Strength, MPa 460
170 to 240
Tensile Strength: Ultimate (UTS), MPa 710
290 to 460
Tensile Strength: Yield (Proof), MPa 500
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1390
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
29
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
99

Otherwise Unclassified Properties

Base Metal Price, % relative 14
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.9
9.0
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 630
170 to 1220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 25
30 to 48
Strength to Weight: Bending, points 23
36 to 50
Thermal Diffusivity, mm2/s 4.0
53
Thermal Shock Resistance, points 20
13 to 20

Alloy Composition

Aluminum (Al), % 0
93 to 95.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0.050 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 66.7 to 75.9
0 to 0.4
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 2.0 to 4.0
0.050 to 0.2
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 2.0 to 4.0
0
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15