MakeItFrom.com
Menu (ESC)

S81921 Stainless Steel vs. C66900 Brass

S81921 stainless steel belongs to the iron alloys classification, while C66900 brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S81921 stainless steel and the bottom bar is C66900 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 29
1.1 to 26
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
45
Shear Strength, MPa 460
290 to 440
Tensile Strength: Ultimate (UTS), MPa 710
460 to 770
Tensile Strength: Yield (Proof), MPa 500
330 to 760

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 990
150
Melting Completion (Liquidus), °C 1430
860
Melting Onset (Solidus), °C 1390
850
Specific Heat Capacity, J/kg-K 480
400
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.8

Otherwise Unclassified Properties

Base Metal Price, % relative 14
23
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
4.6 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 630
460 to 2450
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 25
15 to 26
Strength to Weight: Bending, points 23
16 to 23
Thermal Shock Resistance, points 20
14 to 23

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0
62.5 to 64.5
Iron (Fe), % 66.7 to 75.9
0 to 0.25
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 2.0 to 4.0
11.5 to 12.5
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 2.0 to 4.0
0
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
22.5 to 26
Residuals, % 0
0 to 0.2