MakeItFrom.com
Menu (ESC)

S81921 Stainless Steel vs. C69300 Brass

S81921 stainless steel belongs to the iron alloys classification, while C69300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S81921 stainless steel and the bottom bar is C69300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
8.5 to 15
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 79
41
Shear Strength, MPa 460
330 to 370
Tensile Strength: Ultimate (UTS), MPa 710
550 to 630
Tensile Strength: Yield (Proof), MPa 500
300 to 390

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1430
880
Melting Onset (Solidus), °C 1390
860
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
38
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 14
26
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 2.9
2.7
Embodied Energy, MJ/kg 41
45
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 180
47 to 70
Resilience: Unit (Modulus of Resilience), kJ/m3 630
400 to 700
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 25
19 to 21
Strength to Weight: Bending, points 23
18 to 20
Thermal Diffusivity, mm2/s 4.0
12
Thermal Shock Resistance, points 20
19 to 22

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0
73 to 77
Iron (Fe), % 66.7 to 75.9
0 to 0.1
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 2.0 to 4.0
0 to 0.1
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 2.0 to 4.0
0 to 0.1
Nitrogen (N), % 0.14 to 0.2
0
Phosphorus (P), % 0 to 0.040
0.040 to 0.15
Silicon (Si), % 0 to 1.0
2.7 to 3.4
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
18.4 to 24.3
Residuals, % 0
0 to 0.5