MakeItFrom.com
Menu (ESC)

S82011 Stainless Steel vs. 4115 Aluminum

S82011 stainless steel belongs to the iron alloys classification, while 4115 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S82011 stainless steel and the bottom bar is 4115 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
38 to 68
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 34
1.1 to 11
Fatigue Strength, MPa 410
39 to 76
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
26
Shear Strength, MPa 490
71 to 130
Tensile Strength: Ultimate (UTS), MPa 730
120 to 220
Tensile Strength: Yield (Proof), MPa 510
39 to 190

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 13
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 2.6
8.1
Embodied Energy, MJ/kg 37
150
Embodied Water, L/kg 150
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
2.1 to 10
Resilience: Unit (Modulus of Resilience), kJ/m3 660
11 to 270
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 27
12 to 23
Strength to Weight: Bending, points 24
20 to 30
Thermal Diffusivity, mm2/s 4.0
66
Thermal Shock Resistance, points 20
5.2 to 9.9

Alloy Composition

Aluminum (Al), % 0
94.6 to 97.4
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0 to 0.5
0.1 to 0.5
Iron (Fe), % 68.6 to 76.3
0 to 0.7
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 2.0 to 3.0
0.6 to 1.2
Molybdenum (Mo), % 0.1 to 1.0
0
Nickel (Ni), % 1.0 to 2.0
0
Nitrogen (N), % 0.15 to 0.27
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
1.8 to 2.2
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15