MakeItFrom.com
Menu (ESC)

S82011 Stainless Steel vs. S43932 Stainless Steel

Both S82011 stainless steel and S43932 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S82011 stainless steel and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 34
25
Fatigue Strength, MPa 410
160
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
77
Shear Strength, MPa 490
300
Tensile Strength: Ultimate (UTS), MPa 730
460
Tensile Strength: Yield (Proof), MPa 510
230

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 430
570
Maximum Temperature: Mechanical, °C 1010
890
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
23
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 12
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 37
40
Embodied Water, L/kg 150
120

Common Calculations

PREN (Pitting Resistance) 27
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
96
Resilience: Unit (Modulus of Resilience), kJ/m3 660
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 27
17
Strength to Weight: Bending, points 24
17
Thermal Diffusivity, mm2/s 4.0
6.3
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 20.5 to 23.5
17 to 19
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 68.6 to 76.3
76.7 to 83
Manganese (Mn), % 2.0 to 3.0
0 to 1.0
Molybdenum (Mo), % 0.1 to 1.0
0
Nickel (Ni), % 1.0 to 2.0
0 to 0.5
Niobium (Nb), % 0
0.2 to 0.75
Nitrogen (N), % 0.15 to 0.27
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.75