MakeItFrom.com
Menu (ESC)

S82012 Stainless Steel vs. EN 1.7729 Steel

Both S82012 stainless steel and EN 1.7729 steel are iron alloys. They have 77% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S82012 stainless steel and the bottom bar is EN 1.7729 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 40
17
Fatigue Strength, MPa 480
500
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 550
560
Tensile Strength: Ultimate (UTS), MPa 800
910
Tensile Strength: Yield (Proof), MPa 560
750

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 950
430
Melting Completion (Liquidus), °C 1430
1470
Melting Onset (Solidus), °C 1380
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
40
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.8
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.4
3.3
Embodied Energy, MJ/kg 35
49
Embodied Water, L/kg 140
59

Common Calculations

PREN (Pitting Resistance) 24
4.4
Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
150
Resilience: Unit (Modulus of Resilience), kJ/m3 790
1500
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 29
32
Strength to Weight: Bending, points 25
27
Thermal Diffusivity, mm2/s 3.9
11
Thermal Shock Resistance, points 23
27

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.080
Arsenic (As), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0 to 0.050
0.17 to 0.23
Chromium (Cr), % 19 to 20.5
0.9 to 1.2
Copper (Cu), % 0 to 1.0
0 to 0.2
Iron (Fe), % 71.3 to 77.9
94.8 to 97
Manganese (Mn), % 2.0 to 4.0
0.35 to 0.75
Molybdenum (Mo), % 0.1 to 0.6
0.9 to 1.1
Nickel (Ni), % 0.8 to 1.5
0 to 0.2
Nitrogen (N), % 0.16 to 0.26
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.8
0 to 0.4
Sulfur (S), % 0 to 0.0050
0 to 0.015
Tin (Sn), % 0
0 to 0.020
Titanium (Ti), % 0
0.070 to 0.15
Vanadium (V), % 0
0.6 to 0.8