MakeItFrom.com
Menu (ESC)

S82012 Stainless Steel vs. Grade C-5 Titanium

S82012 stainless steel belongs to the iron alloys classification, while grade C-5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S82012 stainless steel and the bottom bar is grade C-5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
6.7
Fatigue Strength, MPa 480
510
Poisson's Ratio 0.28
0.32
Rockwell C Hardness 27
34
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 800
1000
Tensile Strength: Yield (Proof), MPa 560
940

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 950
340
Melting Completion (Liquidus), °C 1430
1610
Melting Onset (Solidus), °C 1380
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 15
7.1
Thermal Expansion, µm/m-K 13
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 7.7
4.4
Embodied Carbon, kg CO2/kg material 2.4
38
Embodied Energy, MJ/kg 35
610
Embodied Water, L/kg 140
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 290
66
Resilience: Unit (Modulus of Resilience), kJ/m3 790
4200
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 29
63
Strength to Weight: Bending, points 25
50
Thermal Diffusivity, mm2/s 3.9
2.9
Thermal Shock Resistance, points 23
71

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.050
0 to 0.1
Chromium (Cr), % 19 to 20.5
0
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 71.3 to 77.9
0 to 0.4
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 0.1 to 0.6
0
Nickel (Ni), % 0.8 to 1.5
0 to 0.050
Nitrogen (N), % 0.16 to 0.26
0
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4