MakeItFrom.com
Menu (ESC)

S82031 Stainless Steel vs. EN 1.4983 Stainless Steel

Both S82031 stainless steel and EN 1.4983 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S82031 stainless steel and the bottom bar is EN 1.4983 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 39
40
Fatigue Strength, MPa 490
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 540
430
Tensile Strength: Ultimate (UTS), MPa 780
630
Tensile Strength: Yield (Proof), MPa 570
230

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 430
520
Maximum Temperature: Mechanical, °C 980
940
Melting Completion (Liquidus), °C 1430
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
19
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.8
4.1
Embodied Energy, MJ/kg 39
56
Embodied Water, L/kg 150
150

Common Calculations

PREN (Pitting Resistance) 27
24
Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
200
Resilience: Unit (Modulus of Resilience), kJ/m3 820
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
22
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 3.9
4.0
Thermal Shock Resistance, points 22
14

Alloy Composition

Boron (B), % 0
0.0015 to 0.0060
Carbon (C), % 0 to 0.050
0.040 to 0.080
Chromium (Cr), % 19 to 22
16 to 18
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 68 to 78.3
61.8 to 69.6
Manganese (Mn), % 0 to 2.5
0 to 2.0
Molybdenum (Mo), % 0.6 to 1.4
2.0 to 2.5
Nickel (Ni), % 2.0 to 4.0
12 to 14
Nitrogen (N), % 0.14 to 0.24
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.8
0 to 0.75
Sulfur (S), % 0 to 0.0050
0 to 0.015
Titanium (Ti), % 0
0.4 to 0.8