MakeItFrom.com
Menu (ESC)

S82031 Stainless Steel vs. Grade C-2 Titanium

S82031 stainless steel belongs to the iron alloys classification, while grade C-2 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S82031 stainless steel and the bottom bar is grade C-2 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
17
Fatigue Strength, MPa 490
200
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
40
Tensile Strength: Ultimate (UTS), MPa 780
390
Tensile Strength: Yield (Proof), MPa 570
310

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 980
320
Melting Completion (Liquidus), °C 1430
1660
Melting Onset (Solidus), °C 1390
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 13
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
37
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.8
31
Embodied Energy, MJ/kg 39
510
Embodied Water, L/kg 150
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
61
Resilience: Unit (Modulus of Resilience), kJ/m3 820
460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 24
26
Thermal Diffusivity, mm2/s 3.9
8.8
Thermal Shock Resistance, points 22
30

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.1
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0 to 1.0
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 68 to 78.3
0 to 0.2
Manganese (Mn), % 0 to 2.5
0
Molybdenum (Mo), % 0.6 to 1.4
0
Nickel (Ni), % 2.0 to 4.0
0 to 0.050
Nitrogen (N), % 0.14 to 0.24
0
Oxygen (O), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
0
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
98.8 to 100
Residuals, % 0
0 to 0.4