MakeItFrom.com
Menu (ESC)

S82031 Stainless Steel vs. C69430 Brass

S82031 stainless steel belongs to the iron alloys classification, while C69430 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S82031 stainless steel and the bottom bar is C69430 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 39
17
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 540
350
Tensile Strength: Ultimate (UTS), MPa 780
570
Tensile Strength: Yield (Proof), MPa 570
280

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 980
170
Melting Completion (Liquidus), °C 1430
920
Melting Onset (Solidus), °C 1390
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 39
44
Embodied Water, L/kg 150
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
80
Resilience: Unit (Modulus of Resilience), kJ/m3 820
340
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 3.9
7.7
Thermal Shock Resistance, points 22
20

Alloy Composition

Arsenic (As), % 0
0.030 to 0.060
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 19 to 22
0
Copper (Cu), % 0 to 1.0
80 to 83
Iron (Fe), % 68 to 78.3
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 2.5
0
Molybdenum (Mo), % 0.6 to 1.4
0
Nickel (Ni), % 2.0 to 4.0
0
Nitrogen (N), % 0.14 to 0.24
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.8
3.5 to 4.5
Sulfur (S), % 0 to 0.0050
0
Zinc (Zn), % 0
11.4 to 16.5
Residuals, % 0
0 to 0.5