MakeItFrom.com
Menu (ESC)

S82122 Stainless Steel vs. EN 1.0452 Steel

Both S82122 stainless steel and EN 1.0452 steel are iron alloys. They have 74% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S82122 stainless steel and the bottom bar is EN 1.0452 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
120
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
25
Fatigue Strength, MPa 360
210
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 460
270
Tensile Strength: Ultimate (UTS), MPa 680
430
Tensile Strength: Yield (Proof), MPa 450
290

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 990
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
48
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.1
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
1.5
Embodied Energy, MJ/kg 37
19
Embodied Water, L/kg 150
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
94
Resilience: Unit (Modulus of Resilience), kJ/m3 510
220
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 25
15
Strength to Weight: Bending, points 22
16
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0 to 0.17
Chromium (Cr), % 20.5 to 21.5
0 to 0.3
Copper (Cu), % 0.5 to 1.5
0 to 0.3
Iron (Fe), % 68.9 to 75.4
97.1 to 99.58
Manganese (Mn), % 2.0 to 4.0
0.4 to 1.2
Molybdenum (Mo), % 0 to 0.6
0 to 0.080
Nickel (Ni), % 1.5 to 2.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Nitrogen (N), % 0.15 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.75
0 to 0.35
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020