MakeItFrom.com
Menu (ESC)

S82122 Stainless Steel vs. Grade 37 Titanium

S82122 stainless steel belongs to the iron alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S82122 stainless steel and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 34
22
Fatigue Strength, MPa 360
170
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 78
40
Shear Strength, MPa 460
240
Tensile Strength: Ultimate (UTS), MPa 680
390
Tensile Strength: Yield (Proof), MPa 450
250

Thermal Properties

Latent Heat of Fusion, J/g 290
420
Maximum Temperature: Mechanical, °C 990
310
Melting Completion (Liquidus), °C 1420
1650
Melting Onset (Solidus), °C 1380
1600
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 15
21
Thermal Expansion, µm/m-K 13
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.8

Otherwise Unclassified Properties

Base Metal Price, % relative 12
36
Density, g/cm3 7.7
4.5
Embodied Carbon, kg CO2/kg material 2.6
31
Embodied Energy, MJ/kg 37
500
Embodied Water, L/kg 150
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
76
Resilience: Unit (Modulus of Resilience), kJ/m3 510
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 4.0
8.4
Thermal Shock Resistance, points 19
29

Alloy Composition

Aluminum (Al), % 0
1.0 to 2.0
Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 20.5 to 21.5
0
Copper (Cu), % 0.5 to 1.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 68.9 to 75.4
0 to 0.3
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 0 to 0.6
0
Nickel (Ni), % 1.5 to 2.5
0
Nitrogen (N), % 0.15 to 0.2
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
96.9 to 99
Residuals, % 0
0 to 0.4