MakeItFrom.com
Menu (ESC)

S82122 Stainless Steel vs. S34565 Stainless Steel

Both S82122 stainless steel and S34565 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 74% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S82122 stainless steel and the bottom bar is S34565 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
200
Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 34
39
Fatigue Strength, MPa 360
400
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
80
Shear Strength, MPa 460
610
Tensile Strength: Ultimate (UTS), MPa 680
900
Tensile Strength: Yield (Proof), MPa 450
470

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Corrosion, °C 430
450
Maximum Temperature: Mechanical, °C 990
1100
Melting Completion (Liquidus), °C 1420
1420
Melting Onset (Solidus), °C 1380
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
12
Thermal Expansion, µm/m-K 13
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 12
28
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.6
5.3
Embodied Energy, MJ/kg 37
73
Embodied Water, L/kg 150
210

Common Calculations

PREN (Pitting Resistance) 25
47
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
300
Resilience: Unit (Modulus of Resilience), kJ/m3 510
540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
32
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 4.0
3.2
Thermal Shock Resistance, points 19
22

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 20.5 to 21.5
23 to 25
Copper (Cu), % 0.5 to 1.5
0
Iron (Fe), % 68.9 to 75.4
43.2 to 51.6
Manganese (Mn), % 2.0 to 4.0
5.0 to 7.0
Molybdenum (Mo), % 0 to 0.6
4.0 to 5.0
Nickel (Ni), % 1.5 to 2.5
16 to 18
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0.15 to 0.2
0.4 to 0.6
Phosphorus (P), % 0 to 0.040
0 to 0.030
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.010