MakeItFrom.com
Menu (ESC)

S82441 Stainless Steel vs. EN 1.8873 Steel

Both S82441 stainless steel and EN 1.8873 steel are iron alloys. They have 69% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S82441 stainless steel and the bottom bar is EN 1.8873 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 28
19
Fatigue Strength, MPa 400
340
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 79
73
Shear Strength, MPa 490
410
Tensile Strength: Ultimate (UTS), MPa 760
660
Tensile Strength: Yield (Proof), MPa 550
490

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1090
420
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 16
3.2
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.8
Embodied Energy, MJ/kg 45
24
Embodied Water, L/kg 170
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
110
Resilience: Unit (Modulus of Resilience), kJ/m3 740
650
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
23
Strength to Weight: Bending, points 24
21
Thermal Diffusivity, mm2/s 3.9
10
Thermal Shock Resistance, points 21
19

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.030
0 to 0.18
Chromium (Cr), % 23 to 25
0 to 1.0
Copper (Cu), % 0.1 to 0.8
0 to 0.3
Iron (Fe), % 62.6 to 70.2
93.6 to 100
Manganese (Mn), % 2.5 to 4.0
0 to 1.7
Molybdenum (Mo), % 1.0 to 2.0
0 to 0.7
Nickel (Ni), % 3.0 to 4.5
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0.2 to 0.3
0 to 0.015
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 0.7
0 to 0.6
Sulfur (S), % 0 to 0.0050
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.15