MakeItFrom.com
Menu (ESC)

WE43B Magnesium vs. EN 1.4107 Stainless Steel

WE43B magnesium belongs to the magnesium alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43B magnesium and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.2
18 to 21
Fatigue Strength, MPa 110
260 to 350
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Tensile Strength: Ultimate (UTS), MPa 250
620 to 700
Tensile Strength: Yield (Proof), MPa 200
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 330
270
Maximum Temperature: Mechanical, °C 180
740
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 51
27
Thermal Expansion, µm/m-K 27
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 53
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
7.5
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 28
2.1
Embodied Energy, MJ/kg 250
30
Embodied Water, L/kg 910
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 430
420 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 36
22 to 25
Strength to Weight: Bending, points 46
21 to 22
Thermal Diffusivity, mm2/s 28
7.2
Thermal Shock Resistance, points 15
22 to 25

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 0 to 0.020
0 to 0.3
Iron (Fe), % 0 to 0.010
83.8 to 87.2
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.8 to 93.5
0
Manganese (Mn), % 0 to 0.030
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.0050
0.8 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Unspecified Rare Earths, % 2.4 to 4.4
0
Vanadium (V), % 0
0 to 0.080
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0