MakeItFrom.com
Menu (ESC)

WE43B Magnesium vs. EN 1.6570 Steel

WE43B magnesium belongs to the magnesium alloys classification, while EN 1.6570 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43B magnesium and the bottom bar is EN 1.6570 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.2
11 to 17
Fatigue Strength, MPa 110
500 to 660
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Tensile Strength: Ultimate (UTS), MPa 250
910 to 1130
Tensile Strength: Yield (Proof), MPa 200
760 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 180
440
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 51
40
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 53
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
3.9
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 28
1.7
Embodied Energy, MJ/kg 250
23
Embodied Water, L/kg 910
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2
120 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 430
1520 to 3010
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 36
32 to 40
Strength to Weight: Bending, points 46
27 to 31
Thermal Diffusivity, mm2/s 28
11
Thermal Shock Resistance, points 15
27 to 33

Alloy Composition

Carbon (C), % 0
0.28 to 0.35
Chromium (Cr), % 0
1.0 to 1.4
Copper (Cu), % 0 to 0.020
0
Iron (Fe), % 0 to 0.010
94 to 96.2
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.8 to 93.5
0
Manganese (Mn), % 0 to 0.030
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.0050
1.6 to 2.1
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0