MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. 204.0 Aluminum

WE54A magnesium belongs to the magnesium alloys classification, while 204.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is 204.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
90 to 120
Elastic (Young's, Tensile) Modulus, GPa 44
71
Elongation at Break, % 4.3 to 5.6
5.7 to 7.8
Fatigue Strength, MPa 98 to 130
63 to 77
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
27
Tensile Strength: Ultimate (UTS), MPa 270 to 300
230 to 340
Tensile Strength: Yield (Proof), MPa 180
180 to 220

Thermal Properties

Latent Heat of Fusion, J/g 330
390
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
650
Melting Onset (Solidus), °C 570
580
Solidification (Pattern Maker's) Shrinkage, % 1.6
1.3
Specific Heat Capacity, J/kg-K 960
880
Thermal Conductivity, W/m-K 52
120
Thermal Expansion, µm/m-K 25
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
29 to 34
Electrical Conductivity: Equal Weight (Specific), % IACS 47
87 to 100

Otherwise Unclassified Properties

Base Metal Price, % relative 34
11
Density, g/cm3 1.9
3.0
Embodied Carbon, kg CO2/kg material 29
8.0
Embodied Energy, MJ/kg 260
150
Embodied Water, L/kg 900
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
12 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
220 to 350
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
46
Strength to Weight: Axial, points 39 to 43
21 to 31
Strength to Weight: Bending, points 49 to 51
28 to 36
Thermal Diffusivity, mm2/s 28
46
Thermal Shock Resistance, points 18 to 19
12 to 18

Alloy Composition

Aluminum (Al), % 0
93.4 to 95.5
Copper (Cu), % 0 to 0.030
4.2 to 5.0
Iron (Fe), % 0 to 0.010
0 to 0.35
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0.15 to 0.35
Manganese (Mn), % 0 to 0.030
0 to 0.1
Nickel (Ni), % 0 to 0.0050
0 to 0.050
Silicon (Si), % 0 to 0.010
0 to 0.2
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0.15 to 0.3
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.15

Comparable Variants