MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. 5082 Aluminum

WE54A magnesium belongs to the magnesium alloys classification, while 5082 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is 5082 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
67
Elongation at Break, % 4.3 to 5.6
1.1
Fatigue Strength, MPa 98 to 130
110 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
25
Shear Strength, MPa 150 to 170
210 to 230
Tensile Strength: Ultimate (UTS), MPa 270 to 300
380 to 400
Tensile Strength: Yield (Proof), MPa 180
300 to 340

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 640
640
Melting Onset (Solidus), °C 570
560
Specific Heat Capacity, J/kg-K 960
910
Thermal Conductivity, W/m-K 52
130
Thermal Expansion, µm/m-K 25
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
32
Electrical Conductivity: Equal Weight (Specific), % IACS 47
110

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 1.9
2.7
Embodied Carbon, kg CO2/kg material 29
8.9
Embodied Energy, MJ/kg 260
150
Embodied Water, L/kg 900
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
4.0 to 4.3
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
670 to 870
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
51
Strength to Weight: Axial, points 39 to 43
39 to 41
Strength to Weight: Bending, points 49 to 51
43 to 45
Thermal Diffusivity, mm2/s 28
54
Thermal Shock Resistance, points 18 to 19
17 to 18

Alloy Composition

Aluminum (Al), % 0
93.5 to 96
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 0.030
0 to 0.15
Iron (Fe), % 0 to 0.010
0 to 0.35
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
4.0 to 5.0
Manganese (Mn), % 0 to 0.030
0 to 0.15
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0 to 0.2
Titanium (Ti), % 0
0 to 0.1
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0 to 0.25
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.15