MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. A360.0 Aluminum

WE54A magnesium belongs to the magnesium alloys classification, while A360.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is A360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
75
Elastic (Young's, Tensile) Modulus, GPa 44
72
Elongation at Break, % 4.3 to 5.6
1.6 to 5.0
Fatigue Strength, MPa 98 to 130
82 to 150
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
27
Shear Strength, MPa 150 to 170
180
Tensile Strength: Ultimate (UTS), MPa 270 to 300
180 to 320
Tensile Strength: Yield (Proof), MPa 180
170 to 260

Thermal Properties

Latent Heat of Fusion, J/g 330
530
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 640
680
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 960
900
Thermal Conductivity, W/m-K 52
110
Thermal Expansion, µm/m-K 25
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
30
Electrical Conductivity: Equal Weight (Specific), % IACS 47
100

Otherwise Unclassified Properties

Base Metal Price, % relative 34
9.5
Density, g/cm3 1.9
2.6
Embodied Carbon, kg CO2/kg material 29
7.8
Embodied Energy, MJ/kg 260
150
Embodied Water, L/kg 900
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
4.6 to 13
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
190 to 470
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 62
53
Strength to Weight: Axial, points 39 to 43
19 to 34
Strength to Weight: Bending, points 49 to 51
27 to 39
Thermal Diffusivity, mm2/s 28
48
Thermal Shock Resistance, points 18 to 19
8.5 to 15

Alloy Composition

Aluminum (Al), % 0
85.8 to 90.6
Copper (Cu), % 0 to 0.030
0 to 0.6
Iron (Fe), % 0 to 0.010
0 to 1.3
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0.4 to 0.6
Manganese (Mn), % 0 to 0.030
0 to 0.35
Nickel (Ni), % 0 to 0.0050
0 to 0.5
Silicon (Si), % 0 to 0.010
9.0 to 10
Tin (Sn), % 0
0 to 0.15
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0 to 0.5
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.25

Comparable Variants