MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. ACI-ASTM CB6 Steel

WE54A magnesium belongs to the magnesium alloys classification, while ACI-ASTM CB6 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is ACI-ASTM CB6 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 4.3 to 5.6
18
Fatigue Strength, MPa 98 to 130
410
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
77
Tensile Strength: Ultimate (UTS), MPa 270 to 300
880
Tensile Strength: Yield (Proof), MPa 180
660

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 170
870
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 52
17
Thermal Expansion, µm/m-K 25
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 47
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
12
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 29
2.5
Embodied Energy, MJ/kg 260
36
Embodied Water, L/kg 900
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
150
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
1110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 39 to 43
32
Strength to Weight: Bending, points 49 to 51
26
Thermal Diffusivity, mm2/s 28
4.6
Thermal Shock Resistance, points 18 to 19
31

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
74.4 to 81
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.0050
3.5 to 5.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0