MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. ACI-ASTM CG3M Steel

WE54A magnesium belongs to the magnesium alloys classification, while ACI-ASTM CG3M steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is ACI-ASTM CG3M steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
170
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 4.3 to 5.6
28
Fatigue Strength, MPa 98 to 130
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
79
Tensile Strength: Ultimate (UTS), MPa 270 to 300
580
Tensile Strength: Yield (Proof), MPa 180
270

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 170
1020
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 52
15
Thermal Expansion, µm/m-K 25
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 47
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
20
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 29
4.1
Embodied Energy, MJ/kg 260
56
Embodied Water, L/kg 900
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
130
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 39 to 43
20
Strength to Weight: Bending, points 49 to 51
20
Thermal Diffusivity, mm2/s 28
4.1
Thermal Shock Resistance, points 18 to 19
13

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
58.9 to 70
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0 to 1.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.0050
9.0 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0