MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. ASTM A232 Spring Steel

WE54A magnesium belongs to the magnesium alloys classification, while ASTM A232 spring steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is ASTM A232 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
540
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 4.3 to 5.6
14
Fatigue Strength, MPa 98 to 130
1040
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 150 to 170
1090
Tensile Strength: Ultimate (UTS), MPa 270 to 300
1790
Tensile Strength: Yield (Proof), MPa 180
1610

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 52
52
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 47
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.3
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 29
2.0
Embodied Energy, MJ/kg 260
28
Embodied Water, L/kg 900
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
250
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 39 to 43
64
Strength to Weight: Bending, points 49 to 51
42
Thermal Diffusivity, mm2/s 28
14
Thermal Shock Resistance, points 18 to 19
53

Alloy Composition

Carbon (C), % 0
0.48 to 0.53
Chromium (Cr), % 0
0.8 to 1.1
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
96.8 to 97.7
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0.7 to 0.9
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.010
0.15 to 0.35
Sulfur (S), % 0
0 to 0.035
Unspecified Rare Earths, % 1.5 to 4.0
0
Vanadium (V), % 0
0.15 to 0.3
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0