MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. ASTM A372 Grade L Steel

WE54A magnesium belongs to the magnesium alloys classification, while ASTM A372 grade L steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is ASTM A372 grade L steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
350
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 4.3 to 5.6
14
Fatigue Strength, MPa 98 to 130
670
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 150 to 170
700
Tensile Strength: Ultimate (UTS), MPa 270 to 300
1160
Tensile Strength: Yield (Proof), MPa 180
1040

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 170
430
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 52
44
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 47
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
3.5
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 29
1.7
Embodied Energy, MJ/kg 260
22
Embodied Water, L/kg 900
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
150
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
2890
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 39 to 43
41
Strength to Weight: Bending, points 49 to 51
31
Thermal Diffusivity, mm2/s 28
12
Thermal Shock Resistance, points 18 to 19
34

Alloy Composition

Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
95.2 to 96.3
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 0.0050
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.010
0.15 to 0.35
Sulfur (S), % 0
0 to 0.010
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0