MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. ASTM B817 Type I

WE54A magnesium belongs to the magnesium alloys classification, while ASTM B817 type I belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
100
Elongation at Break, % 4.3 to 5.6
4.0 to 13
Fatigue Strength, MPa 98 to 130
360 to 520
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 17
40
Tensile Strength: Ultimate (UTS), MPa 270 to 300
770 to 960
Tensile Strength: Yield (Proof), MPa 180
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 330
410
Maximum Temperature: Mechanical, °C 170
340
Melting Completion (Liquidus), °C 640
1600
Melting Onset (Solidus), °C 570
1550
Specific Heat Capacity, J/kg-K 960
560
Thermal Conductivity, W/m-K 52
7.1
Thermal Expansion, µm/m-K 25
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 47
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 34
36
Density, g/cm3 1.9
4.4
Embodied Carbon, kg CO2/kg material 29
38
Embodied Energy, MJ/kg 260
610
Embodied Water, L/kg 900
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
35
Strength to Weight: Axial, points 39 to 43
48 to 60
Strength to Weight: Bending, points 49 to 51
42 to 49
Thermal Diffusivity, mm2/s 28
2.9
Thermal Shock Resistance, points 18 to 19
54 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 0 to 0.030
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.010
0 to 0.4
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0
Nickel (Ni), % 0 to 0.0050
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Silicon (Si), % 0 to 0.010
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Titanium (Ti), % 0
87 to 91
Unspecified Rare Earths, % 1.5 to 4.0
0
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.4