MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. EN 1.4150 Stainless Steel

WE54A magnesium belongs to the magnesium alloys classification, while EN 1.4150 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is EN 1.4150 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
220
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 4.3 to 5.6
20
Fatigue Strength, MPa 98 to 130
270
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 150 to 170
460
Tensile Strength: Ultimate (UTS), MPa 270 to 300
730
Tensile Strength: Yield (Proof), MPa 180
430

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 170
840
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 960
490
Thermal Conductivity, W/m-K 52
23
Thermal Expansion, µm/m-K 25
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 47
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
8.5
Density, g/cm3 1.9
7.6
Embodied Carbon, kg CO2/kg material 29
2.8
Embodied Energy, MJ/kg 260
42
Embodied Water, L/kg 900
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
120
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
470
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 39 to 43
27
Strength to Weight: Bending, points 49 to 51
24
Thermal Diffusivity, mm2/s 28
6.2
Thermal Shock Resistance, points 18 to 19
27

Alloy Composition

Carbon (C), % 0
0.45 to 0.6
Chromium (Cr), % 0
15 to 16.5
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
79 to 82.8
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 0 to 0.0050
0 to 0.4
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.010
1.3 to 1.7
Sulfur (S), % 0
0 to 0.010
Unspecified Rare Earths, % 1.5 to 4.0
0
Vanadium (V), % 0
0.2 to 0.4
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0