MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. EN 1.4658 Stainless Steel

WE54A magnesium belongs to the magnesium alloys classification, while EN 1.4658 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is EN 1.4658 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
260
Elastic (Young's, Tensile) Modulus, GPa 44
210
Elongation at Break, % 4.3 to 5.6
28
Fatigue Strength, MPa 98 to 130
530
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 17
81
Shear Strength, MPa 150 to 170
580
Tensile Strength: Ultimate (UTS), MPa 270 to 300
900
Tensile Strength: Yield (Proof), MPa 180
730

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1400
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 52
16
Thermal Expansion, µm/m-K 25
13

Otherwise Unclassified Properties

Base Metal Price, % relative 34
25
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 29
4.5
Embodied Energy, MJ/kg 260
61
Embodied Water, L/kg 900
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
240
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
1280
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 39 to 43
32
Strength to Weight: Bending, points 49 to 51
26
Thermal Diffusivity, mm2/s 28
4.3
Thermal Shock Resistance, points 18 to 19
24

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 29
Cobalt (Co), % 0
0.5 to 2.0
Copper (Cu), % 0 to 0.030
0 to 1.0
Iron (Fe), % 0 to 0.010
50.9 to 63.7
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0 to 1.5
Molybdenum (Mo), % 0
4.0 to 5.0
Nickel (Ni), % 0 to 0.0050
5.5 to 9.5
Nitrogen (N), % 0
0.3 to 0.5
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0