MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. EN 1.7386 Steel

WE54A magnesium belongs to the magnesium alloys classification, while EN 1.7386 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is EN 1.7386 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
170 to 200
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 4.3 to 5.6
18 to 21
Fatigue Strength, MPa 98 to 130
170 to 290
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
75
Shear Strength, MPa 150 to 170
340 to 410
Tensile Strength: Ultimate (UTS), MPa 270 to 300
550 to 670
Tensile Strength: Yield (Proof), MPa 180
240 to 440

Thermal Properties

Latent Heat of Fusion, J/g 330
270
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 52
26
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 47
10

Otherwise Unclassified Properties

Base Metal Price, % relative 34
6.5
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 29
2.0
Embodied Energy, MJ/kg 260
28
Embodied Water, L/kg 900
88

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
92 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
150 to 490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 39 to 43
20 to 24
Strength to Weight: Bending, points 49 to 51
19 to 22
Thermal Diffusivity, mm2/s 28
6.9
Thermal Shock Resistance, points 18 to 19
15 to 18

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 0 to 0.030
0 to 0.3
Iron (Fe), % 0 to 0.010
86.8 to 90.5
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.010
0.25 to 1.0
Sulfur (S), % 0
0 to 0.010
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0