MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. EN 1.7725 Steel

WE54A magnesium belongs to the magnesium alloys classification, while EN 1.7725 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is EN 1.7725 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
250 to 300
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 4.3 to 5.6
14
Fatigue Strength, MPa 98 to 130
390 to 550
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Tensile Strength: Ultimate (UTS), MPa 270 to 300
830 to 1000
Tensile Strength: Yield (Proof), MPa 180
610 to 860

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 52
39
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 47
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.9
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 29
1.8
Embodied Energy, MJ/kg 260
24
Embodied Water, L/kg 900
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
110 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
980 to 1940
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 39 to 43
29 to 35
Strength to Weight: Bending, points 49 to 51
25 to 28
Thermal Diffusivity, mm2/s 28
11
Thermal Shock Resistance, points 18 to 19
24 to 29

Alloy Composition

Carbon (C), % 0
0.27 to 0.34
Chromium (Cr), % 0
1.3 to 1.7
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
95.7 to 97.5
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0.6 to 1.0
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.010
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 1.5 to 4.0
0
Vanadium (V), % 0
0.050 to 0.15
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0

Comparable Variants