MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. Grade CX2M Nickel

WE54A magnesium belongs to the magnesium alloys classification, while grade CX2M nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is grade CX2M nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
220
Elongation at Break, % 4.3 to 5.6
45
Fatigue Strength, MPa 98 to 130
260
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
84
Tensile Strength: Ultimate (UTS), MPa 270 to 300
550
Tensile Strength: Yield (Proof), MPa 180
310

Thermal Properties

Latent Heat of Fusion, J/g 330
330
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 640
1500
Melting Onset (Solidus), °C 570
1450
Specific Heat Capacity, J/kg-K 960
430
Thermal Conductivity, W/m-K 52
10
Thermal Expansion, µm/m-K 25
12

Otherwise Unclassified Properties

Base Metal Price, % relative 34
65
Density, g/cm3 1.9
8.7
Embodied Carbon, kg CO2/kg material 29
12
Embodied Energy, MJ/kg 260
160
Embodied Water, L/kg 900
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
210
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
220
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
23
Strength to Weight: Axial, points 39 to 43
18
Strength to Weight: Bending, points 49 to 51
17
Thermal Diffusivity, mm2/s 28
2.7
Thermal Shock Resistance, points 18 to 19
15

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
0 to 1.5
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0 to 1.0
Molybdenum (Mo), % 0
15 to 16.5
Nickel (Ni), % 0 to 0.0050
56.4 to 63
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0