MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. C81400 Copper

WE54A magnesium belongs to the magnesium alloys classification, while C81400 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is C81400 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
120
Elongation at Break, % 4.3 to 5.6
11
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
41
Tensile Strength: Ultimate (UTS), MPa 270 to 300
370
Tensile Strength: Yield (Proof), MPa 180
250

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 640
1090
Melting Onset (Solidus), °C 570
1070
Specific Heat Capacity, J/kg-K 960
390
Thermal Conductivity, W/m-K 52
260
Thermal Expansion, µm/m-K 25
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
60
Electrical Conductivity: Equal Weight (Specific), % IACS 47
61

Otherwise Unclassified Properties

Base Metal Price, % relative 34
33
Density, g/cm3 1.9
8.9
Embodied Carbon, kg CO2/kg material 29
2.8
Embodied Energy, MJ/kg 260
45
Embodied Water, L/kg 900
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
36
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
260
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 62
18
Strength to Weight: Axial, points 39 to 43
11
Strength to Weight: Bending, points 49 to 51
13
Thermal Diffusivity, mm2/s 28
75
Thermal Shock Resistance, points 18 to 19
13

Alloy Composition

Beryllium (Be), % 0
0.020 to 0.1
Chromium (Cr), % 0
0.6 to 1.0
Copper (Cu), % 0 to 0.030
98.4 to 99.38
Iron (Fe), % 0 to 0.010
0
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0
0 to 0.5