MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. S30435 Stainless Steel

WE54A magnesium belongs to the magnesium alloys classification, while S30435 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is S30435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
160
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 4.3 to 5.6
51
Fatigue Strength, MPa 98 to 130
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 150 to 170
370
Tensile Strength: Ultimate (UTS), MPa 270 to 300
510
Tensile Strength: Yield (Proof), MPa 180
170

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 52
16
Thermal Expansion, µm/m-K 25
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 47
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
14
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 29
2.9
Embodied Energy, MJ/kg 260
40
Embodied Water, L/kg 900
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
210
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
77
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 39 to 43
18
Strength to Weight: Bending, points 49 to 51
18
Thermal Diffusivity, mm2/s 28
4.2
Thermal Shock Resistance, points 18 to 19
12

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.030
1.5 to 3.0
Iron (Fe), % 0 to 0.010
66.9 to 75.5
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Nickel (Ni), % 0 to 0.0050
7.0 to 9.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0