MakeItFrom.com
Menu (ESC)

ZC63A Magnesium vs. 1100A Aluminum

ZC63A magnesium belongs to the magnesium alloys classification, while 1100A aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ZC63A magnesium and the bottom bar is 1100A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 48
69
Elongation at Break, % 3.3
4.5 to 34
Fatigue Strength, MPa 94
35 to 74
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 19
26
Shear Strength, MPa 130
59 to 99
Tensile Strength: Ultimate (UTS), MPa 220
89 to 170
Tensile Strength: Yield (Proof), MPa 130
29 to 150

Thermal Properties

Latent Heat of Fusion, J/g 330
400
Maximum Temperature: Mechanical, °C 98
170
Melting Completion (Liquidus), °C 550
640
Melting Onset (Solidus), °C 470
640
Specific Heat Capacity, J/kg-K 950
900
Thermal Conductivity, W/m-K 120
230
Thermal Expansion, µm/m-K 26
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
60
Electrical Conductivity: Equal Weight (Specific), % IACS 140
200

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 2.1
2.7
Embodied Carbon, kg CO2/kg material 22
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 920
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
6.4 to 23
Resilience: Unit (Modulus of Resilience), kJ/m3 190
5.9 to 150
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 58
50
Strength to Weight: Axial, points 29
9.1 to 17
Strength to Weight: Bending, points 38
16 to 25
Thermal Diffusivity, mm2/s 58
93
Thermal Shock Resistance, points 12
4.0 to 7.6

Alloy Composition

Aluminum (Al), % 0
99 to 100
Copper (Cu), % 2.4 to 3.0
0.050 to 0.2
Iron (Fe), % 0
0 to 1.0
Magnesium (Mg), % 89.2 to 91.9
0 to 0.1
Manganese (Mn), % 0.25 to 0.75
0 to 0.050
Nickel (Ni), % 0 to 0.010
0
Silicon (Si), % 0 to 0.2
0 to 1.0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 5.5 to 6.5
0 to 0.1
Residuals, % 0
0 to 0.15