MakeItFrom.com
Menu (ESC)

ZC63A Magnesium vs. EN 1.8895 Steel

ZC63A magnesium belongs to the magnesium alloys classification, while EN 1.8895 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZC63A magnesium and the bottom bar is EN 1.8895 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
120
Elastic (Young's, Tensile) Modulus, GPa 48
190
Elongation at Break, % 3.3
26
Fatigue Strength, MPa 94
220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 19
73
Shear Strength, MPa 130
260
Tensile Strength: Ultimate (UTS), MPa 220
400
Tensile Strength: Yield (Proof), MPa 130
300

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 98
400
Melting Completion (Liquidus), °C 550
1460
Melting Onset (Solidus), °C 470
1420
Specific Heat Capacity, J/kg-K 950
470
Thermal Conductivity, W/m-K 120
49
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.2
Density, g/cm3 2.1
7.8
Embodied Carbon, kg CO2/kg material 22
1.6
Embodied Energy, MJ/kg 150
21
Embodied Water, L/kg 920
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
96
Resilience: Unit (Modulus of Resilience), kJ/m3 190
240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 58
24
Strength to Weight: Axial, points 29
14
Strength to Weight: Bending, points 38
15
Thermal Diffusivity, mm2/s 58
13
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0 to 0.13
Copper (Cu), % 2.4 to 3.0
0
Iron (Fe), % 0
97 to 99.98
Magnesium (Mg), % 89.2 to 91.9
0
Manganese (Mn), % 0.25 to 0.75
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.010
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 5.5 to 6.5
0
Residuals, % 0 to 0.3
0